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General Expression of the Gyroviscous Force

J.J. Ramos
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Abstract

Assuming only small gyromotion periods and Larmor radii compared to any other time and length

scales, and retaining the lowest significant order in δ = ρi/L � 1, the general expression of the ion

gyroviscous stress tensor is presented. This expression covers both the ”fast dynamics” (or ”magne-

tohydrodynamic”) ordering, where the time derivative and ion gyroviscous stress are first order in δ

relative to the ion gyrofrequency and scalar pressure respectively, and the ”slow dynamics” (or ”drift”)

ordering, where the time derivative and ion gyroviscous stress are respectively second order in δ. This

general stress tensor applies to arbitrary collisionality and does not require the distribution function

to be close to a Maxwellian. Its exact divergence (gyroviscous force) is written in closed vector form,

allowing for arbitrary magnetic geometry, parallel gradients and flow velocities. Considering in partic-

ular the contribution from the velocity gradient (rate of strain) term, the final form of the momentum

conservation equation after the ”gyroviscous cancellation” and the ”effective renormalization of the

perpendicular pressure by the parallel vorticity” is precisely established.
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I. Introduction.

The inclusion of finite ion Larmor radius (FLR) effects in the fluid moment equations, is a fun-

damental part of the so-called ”extended magnetohydrodynamic” (extended-MHD) or ”multi-fluid”

description of magnetized plasmas. Extended-MHD theories are currently the subject of very active

research, since they are recognized to be necessary to explain many important phenomena such as the

sawtooth, neoclassical-tearing and edge-localized modes in tokamaks, the stability of field-reversed-

configurations (FRC), or the magnetic reconnection processes in general. The main FLR effect in

the ion momentum conservation equation is the gyroviscous force. This term, in its most elementary

form which takes into account only a simplified contribution from the velocity gradient (rate of strain)

tensor, has long been known to allow the diamagnetic stabilization of single-fluid modes1−4. However,

realistic theoretical analyses and numerical simulations that could live up to the expectation of a reli-

able predictive capability, need a more accurate treatment of the gyroviscosity. There are two aspects

to this. First, the appropriate form of the stress tensor should be used according to the plasma regime

under consideration, bearing in mind that the simplest and most popular form that involves just the

velocity gradient tensor2−6 applies only to high collisionality and fast (MHD-like) time evolution with

sonic flows. Second, an accurate evaluation of the divergence of the stress tensor should be carried

out, allowing for realistic magnetic geometry, finite parallel gradients, and compressible flow velocities

with comparable parallel and perpendicular components.

Proper expressions of the gyroviscous stress tensor Πgyr, applicable to different collisionality

regimes, are available in the literature6−10. These have been derived for either the ”fast dynam-

ics” ordering characterized by u ∼ vthi, ∂/∂t ∼ δΩci and Πgyr ∼ δp, or the ”slow dynamics” ordering

characterized by u ∼ δvthi, ∂/∂t ∼ δ2Ωci and Πgyr ∼ δ2p (here δ = ρi/L � 1 is the ratio between the

ion gyroradius and other length scales, Ωci and vthi are the ion gyrofrequency and thermal speed, u

is the macroscopic flow velocity and p is the scalar pressure). Braginskii’s6 form applies to high colli-

sionality and fast dynamics, Mikhailowskii-Tsypin’s7 applies to high collisionality and slow dynamics,

and Macmahon’s8 applies to collisionless or arbitrary collisionality regimes and fast dynamics. The

Simakov-Catto9 result was derived for slow dynamics without explicit assumptions on the collision-
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ality, but requiring that the distribution function would still be a Maxwellian in lowest order. The

results of Ref. 10 are completely general (within the lowest significant order in the small-δ asymptotic

expansions), do not require the distribution function to be close to a Maxwellian and contain all the

above as special limits. As far as the implementation of these results is concerned, only Braginskii’s

expression has so far been included or is in the process of being included in the state of the art nu-

merical simulation codes11−14.

With regard the evaluation of the divergence of the gyroviscous stress tensor (the gyroviscous

force), only approximate results have been reported2−5,15−22 and implemented numerically11−13, even

when consideration was limited to the simplest Braginskii form. Routinely made approximations in-

clude constant magnetic field, neglect of parallel derivatives, incompressible or mostly perpendicular

flow, weak anisotropy, low beta or electrostatic limits. The purpose of this work is to provide the exact

expression of the gyroviscous force, in coordinate-free vector form, without invoking any of those sub-

sidiary assumptions and based on the general stress tensor derived in Ref. 10. An explicit gyroviscous

force is not necessary in a numerical scheme that uses the weak form of the discretized equations

such as the one adopted by the NIMROD code14. In this case, only the scalar products with a set of

basis functions are used and, following partial integration, only the stress tensor (not its divergence)

is needed explicitly. However, besides its theoretical interest, the availability of an expression of the

force will always be useful to enforce possible cancellations and to provide the possibility of other

numerical schemes.

II. The general gyroviscous stress.

The gyroviscous stress is defined as the traceless and perpendicular (i.e. Πgyr
ii = Πgyr

ij bibj = 0) part

of the stress tensor in the fluid rest frame that does not depend explicitly on the collision frequencies.

The fluid rest frame stress tensor can be uniquely split into its Chew-Goldberger-Low (CGL) part and

its traceless perpendicular part:

m

∫
d3v (vi − ui)(vj − uj) f(v,x, t) = p⊥δij + (p‖ − p⊥)bibj + P̂ij , (1)
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where P̂ii = P̂ijbibj = 0. The tensor P̂ij can in turn be uniquely split into parts that do and do not

depend explicitly on the collision frequencies, and this specifies the gyroviscous stress:

P̂ij = Πgyr
ij + Πcoll

⊥ij . (2)

In Eq.(1), f(v,x, t) is the distribution function, u(x, t) is the macroscopic flow velocity,∫
d3v vi f(v,x, t) = n ui , (3)

with n(x, t) the particle density, ∫
d3v f(v,x, t) = n , (4)

p‖(x, t) and p⊥(x, t) are the parallel and perpendicular pressures, and b(x, t) = B/B is the magnetic

unit vector. It is also useful to introduce the mean scalar pressure p = (p‖ + 2p⊥)/3. All the analysis

in this paper refers to the ion variables, so the ion species index is dropped throughout. A completely

similar analysis could be carried out for the electrons, but electron gyroviscosity and other electron

Larmor radius effects are usually neglected due to the small electron mass.

Analogously, the third rank stress-flux tensor can be written as:

m

∫
d3v (vi − ui)(vj − uj)(vk − uk)f = qT‖δ[ijbk] + (2qB‖ − 3qT‖)bibjbk + Θgyr

ijk + Θcoll
⊥ijk , (5)

where the CGL variables qT‖ and qB‖ are the parallel fluxes of perpendicular heat and parallel heat

respectively, and Θgyr
iij bj = Θgyr

ijk bibjbk = Θcoll
⊥iijbj = Θcoll

⊥ijkbibjbk = 0. In our notation, the square

brackets around indices represent the minimal sum over permutations of uncontracted indices needed

to yield completely symmetric tensors.

Considering the vivj moment of the kinetic equation for f(v,x, t), it follows that Πgyr
ij can always

be expressed10,23,24 as

Πgyr
ij =

1
4
ε[iklbkK

gyr
lm

(
δmj] + 3bmbj]

)
, (6)

and the general form of the tensor Kgyr
ij is given in Ref. 10. Within the lowest significant order in the

fundamental expansion parameter δ, but keeping enough terms to cover both the fast dynamics and

slow dynamics orderings with a single formula, it is:
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Kgyr
ij =

m

eB

[
p⊥

∂uj]

∂x[i
+

∂(qT‖bj])
∂x[i

+ b[i cj] +
∂Θgyr

ijk

∂xk

]
, (7)

where

c = (2qB‖ − 3qT‖)κ +

(
p‖ − p⊥

B

) {
2(B · ∇)u −∇×

[
1
en

∇p⊥ +
1
en

(B · ∇)

(
p‖ − p⊥

B
b

)]}
(8)

and κ = (b · ∇)b is the magnetic curvature.

The collision-independent perpendicular stress-flux tensor Θgyr
ijk is a quantity of order δpvth, which

is needed only in the slow dynamics ordering where u = O(δvth) and Kgyr
ij = O(δ2p). For this case,

and within the required accuracy of O(δpvth), the result of Ref. 10 can be written as:

Θgyr
ijk = 2b[ibjq

gyr
B⊥k] +

1
2

(
δ[ij − b[ibj

)
qgyr
T⊥k] +

α

2
ε[ilmbjbl

(
∂bn

∂xm
+

∂bm

∂xn

)(
δnk] − bnbk]

)
(9)

with

qgyr
B⊥ =

1
eB

b ×
[
1
2
p⊥∇

(
p‖
n

)
+

p‖(p‖ − p⊥)
n

κ +
1
5
∇(r̃(0)

⊥ + r̃
(0)
∆ ) + (r̃(0)

‖ − r̃
(0)
⊥ − r̃

(0)
∆ )κ

]
, (10)

qgyr
T⊥ =

1
eB

b ×
[
2p⊥∇

(
p⊥
n

)
+

1
5
∇(4r̃

(0)
⊥ − r̃

(0)
∆ ) + r̃

(0)
∆ κ

]
, (11)

and

α =
1

eB

[
p⊥(p‖ − p⊥)

2n
+ r̃

(0)
∆

]
. (12)

Here, qgyr
B⊥ and qgyr

T⊥ are the collision-independent parts of the perpendicular fluxes of parallel heat

and perpendicular heat respectively. The scalars r̃
(0)
‖ , r̃

(0)
⊥ and r̃

(0)
∆ , whose precise definition is given

in Appendix A, are three independent components of the fourth rank fluid moment, evaluated on the

difference between the actual zeroth-order distribution function and a two-temperature Maxwellian.

The divergence of the collision-independent perpendicular stress-flux tensor ∂Θgyr
ijk /∂xk was not

evaluated explicitly in Ref. 10 in the most general, strongly anisotropic case. The details of this

calculation are now given in Appendix B. We note that terms proportional to δij and bibj in Kgyr
ij do
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not contribute to Πgyr
ij . Thus, bringing the result of Eqs.(57,58) to (7) and dropping the δij and bibj

terms, we get the final expression:

Kgyr
ij =

m

eB

{
p⊥

∂uj]

∂x[i
+

∂

∂x[i

[(
qT‖ −

αj‖
B

)
bj] +

1
2
qgyr
T⊥j]

]
+ b[i (cj] + dj]) +

+ κ[i g⊥j] + ε[ilm

[(
∇ · (αb) bl + ακl

) ∂bj]

∂xm
+ αbl

∂κj]

∂xm

] }
, (13)

where j‖ = b · (∇× B) is the parallel current,

g⊥ = 2qgyr
B⊥ − 1

2
qgyr

T⊥ =
1

eB
b×

[
p⊥∇

(
p‖ − p⊥

n

)
+

2p‖(p‖ − p⊥)
n

κ +
1
2
∇r̃

(0)
∆ +

(
2r̃

(0)
‖ − 2r̃

(0)
⊥ − 5

2
r̃
(0)
∆

)
κ

]
(14)

and

d =
3αj‖
B

κ + ∇×
[
g⊥ × b − α(∇ · b)b

]
+ 2

{[
g⊥ + ∇× (αb)

]
· ∇

}
b . (15)

This general formula (6,13) for the gyroviscous stress takes into account all the details of the mag-

netic geometry, and is valid for strongly anisotropic and far from Maxwellian distribution functions.

If the distribution function were Maxwellian or just isotropic in lowest order, then (p‖ − p⊥) would

vanish in lowest order as would (r̃(0)
‖ − r̃

(0)
⊥ ) and r̃

(0)
∆ . In this particular case, the lowest significant

order expression (13) for Kgyr
ij would lack the α, g⊥ and d terms.

III. Special limits.

The formerly known gyroviscosity tensors, which apply to different more specific regimes, can be

recovered as special limits of our general expression. In a high collisionality regime, the lowest-order

distribution function is Maxwellian, therefore (p‖ − p⊥) � p, q � pvth and r̃
(0)
‖ = r̃

(0)
⊥ = r̃

(0)
∆ = 0. It

also follows that, at high collisionality, (2qB‖ − 3qT‖) � δpvth and |2qgyr
B⊥ − 1

2q
gyr
T⊥| � δpvth. If besides
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one considers fast dynamics with sonic flows, u ∼ vth, the gyroviscous stress is Πgyr ∼ δp. Within this

first-order accuracy, Eq.(13) reduces then to the Braginskii form6:

Kgyr
ij =

mp⊥
eB

∂uj]

∂x[i
, (16)

in which case one can take p⊥ = p.

Considering high collisionality but slow dynamics with diamagnetic flows, u ∼ δvth, the leading

order gyroviscous stress is Πgyr ∼ δ2p. If we keep this second-order accuracy using the above high

collisionality simplifications, Eq.(13) reduces to the Mikhailowskii-Tsypin form7,23:

Kgyr
ij =

m

eB

[
p⊥

∂uj]

∂x[i
+

∂

∂x[i

(
qT‖bj] +

1
2
qgyr
T⊥j]

)]
, (17)

in which case p⊥ = p and qT‖bj + 1
2qgyr

T⊥j = 2
5 [(qT‖ + qB‖)bj + qgyr

T⊥j + qgyr
B⊥j ].

Without any assumptions on the collisionality so that the distribution function is allowed to be

far from Maxwellian and highly anisotropic, but considering the fast dynamics ordering so that only

O(δp) accuracy needs to be retained, Eq.(13) reduces to:

Kgyr
ij =

m

eB

{
p⊥

∂uj]

∂x[i
+

∂(qT‖bj])
∂x[i

+ b[i

[
(2qB‖ − 3qT‖)κj] + 2(p‖ − p⊥)bk

∂uj]

∂xk

]}
, (18)

in agreement with Macmahon’s result8.

Finally, we may consider the slow dynamics ordering without any explicit reference to the colli-

sionality regime, but assuming that the lowest-order distribution function would still be Maxwellian

or at least isotropic. At low collisionality, this is guaranteed only under some special circumstances

such as equilibria with closed magnetic surfaces. In this case, as discussed in the preceding section,

the α, g⊥ and d terms drop from Eq.(13). Also, the term proportional to (p‖ − p⊥) in the vector c

(8) becomes negligible within the leading order accuracy Πgyr ∼ δ2p. Thus, we get9,10:

Kgyr
ij =

m

eB

[
p⊥

∂uj]

∂x[i
+

∂

∂x[i

(
qT‖bj] +

1
2
qgyro
T⊥j]

)
+ b[i (2qB‖ − 3qT‖)κj]

]
. (19)
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Here p⊥ can be taken equal to p, and the reduced expression for qgyr
T⊥ follows from the corresponding

limit of Eq.(11). If one assumes a Maxwellian lowest-order distribution function9, this is

qgyr
T⊥ =

2p

eB
b ×∇

(
p

n

)
, (20)

and if one assumes an isotropic but not necessarily Maxwellian lowest-order distribution function10

with r̃
(0)
‖ = r̃

(0)
⊥ = r̃(0) �= 0, it is

qgyr
T⊥ =

2
eB

b ×
[
p∇

(
p

n

)
+

2
5
∇r̃(0)

]
. (21)

IV. Explicit gyroviscous force and momentum conservation equation.

The divergence of the gyroviscous stress tensor contributes the gyroviscous force term to the

momentum conservation equation. In order to obtain an explicit representation of the gyroviscous

force vector, it is convenient to split the stress tensor in five terms according to the five terms in the

r.h.s. of Eq.(13):

Πgyr
ij =

5∑
N=1

ΠgyrN
ij =

1
4
ε[iklbk

(
5∑

N=1

KgyrN
lm

)(
δmj] + 3bmbj]

)
, (22)

with

Kgyr1
ij =

mp⊥
eB

∂uj]

∂x[i
, (23)

Kgyr2
ij =

m

eB

∂

∂x[i

[(
qT‖ −

αj‖
B

)
bj] +

1
2
qgyr
T⊥j]

]
, (24)

Kgyr3
ij =

m

eB
b[i (cj] + dj]) , (25)

Kgyr4
ij =

m

eB
κ[i g⊥j] , (26)

and

Kgyr5
ij =

m

eB
ε[ilm

[(
∇ · (αb) bl + ακl

) ∂bj]

∂xm
+ αbl

∂κj]

∂xm

]
. (27)
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The first term, driven by the velocity gradient (or rate of strain) tensor, is the one most commonly

considered2−6,11−18. However, only approximate calculations of the corresponding force vector have

been reported, as far as this author is aware. The exact result in coordinate-free form, whose derivation

is detailed in Appendix C, is:

∇ · Πgyr1 = − m n (u∗ · ∇)u − ∇χ −

− ∇×
{

mp⊥
eB

[
(b · ∇)u +

1
2

(
∇ · u − 3b ·

[
(b · ∇)u

])
b

]}
+

+ (B · ∇)

{
mp⊥
eB2

b ×
[
3(b · ∇)u + b × ω

]
+

χ

B
b

}
. (28)

Here, ω = ∇× u is the vorticity with the scalar χ proportional to its parallel component,

χ =
mp⊥
2eB

b · ω , (29)

and u∗ is the magnetization velocity:

u∗ = − 1
en

∇×
(

p⊥
B

b

)
. (30)

The second term includes the contribution from the gradients of the heat fluxes. Since it has the

same form as the first one, the corresponding piece of the gyroviscous force can be obtained by direct

substitution:

∇ · Πgyr2 = ∇ · Πgyr1
[
p⊥ → 1 ; u → (qT‖ − αj‖/B)b + qgyr

T⊥/2
]

. (31)

The Πgyr3 and Πgyr4 terms are in the form of symmetrized tensor products of vectors (diadic

forms):

Πgyr3 =
m

eB

{
[b × (c + d)] b + b [b × (c + d)]

}
(32)
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and

Πgyr4 =
m

4eB

[
(b × κ) g⊥ + g⊥ (b × κ) + (b × g⊥) κ + κ (b × g⊥)

]
. (33)

Therefore the evaluation of their divergence is straightforward and, using standard vector identities,

we can write:

∇ · Πgyr3 = ∇×
{
B ×

[ m

eB2
(c + d)

]}
+ (B · ∇)

[ 2m

eB2
(c + d)

]
(34)

and

∇ · Πgyr4 =
m

2eB

{[
(∇ · κ)b − (b · ∇)κ

]
× g⊥ +

[
∇ · (b × κ)

]
g⊥

}
+

+

{[
∇ ·

(m g⊥
2eB

)
− m g⊥ · κ

2eB

]
b − (b · ∇)

(m g⊥
2eB

)}
× κ +

[
∇ ·

(m b × g⊥
2eB

)]
κ +

+

{
m g⊥ · (∇× κ)

2eB
−

m j‖ g⊥ · κ
2eB2

+ κ ·
[
∇×

(m g⊥
2eB

)]}
b . (35)

Like Πgyr4, the Πgyr5 term needs to be retained only in the slow dynamics ordering and then only

if the lowest-order distribution function is anisotropic. Its divergence is evaluated following procedures

similar to those used in the Appendices B and C. Without elaborating on the details, the result is:

∇ · Πgyr5 = −∇
[

mα

2eB
(∇ · κ) + ∇ ·

(m∇ · (αb)
2eB

b
)]

+

+ ∇×
{
b ×

(
mα

4eB
ξ⊥ +

m∇ · (αb)
2eB

κ

)
+

[
mα

2eB
∇ ·

(j‖
B

b
)

+
m∇ · (αb) j‖

2eB2

]
b

}
+

+ (B · ∇)

{
mα

2eB2

[
ξ⊥ + (∇ · κ) b

]
+

m∇ · (αb)
2eB2

κ +
1
B
∇

[m∇ · (αb)
2eB

]}
+

+ b ×
{([

∇×
(m∇ · (αb)

2eB
b

)]
· ∇

)
b +

([
∇×

(mα

eB
b

)]
· ∇

)
κ

}
+

+
mα

eB

[
∇ ·

(j‖
B

b
)]

b × κ −
[
(b × κ) · ∇

](mα

eB
b × κ

)
− m∇ · (αb)

2eB
η − mα

eB
ζ , (36)
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where

ξ⊥ = 5(κ · ∇)b − (∇ · b) κ + b ×
{
3
[
(b × κ) · ∇

]
b −

5j‖
B

κ
}

, (37)

and η, ζ are the vectors with components

ηi = εikl εjmn bj
∂bk

∂xm

∂bl

∂xn
, (38)

ζi = εikl εjmn bj
∂bk

∂xm

∂κl

∂xn
. (39)

In the momentum conservation equation, parts of ∇ · Πgyr1 (28) can be combined with the di-

vergence of the Reynolds stress and the CGL stress. Collecting all the terms, the final form of the

complete momentum conservation equation is

mn
∂u
∂t

+ mn
[
(u − u∗) · ∇

]
u + ∇(p⊥ − χ) + (B · ∇)

(
p‖ − p⊥ + χ

B
b

)
−

− ∇×
{

mp⊥
eB

[
(b · ∇)u +

1
2

(
∇ · u − 3b ·

[
(b · ∇)u

])
b

]}
+

+ (B · ∇)

{
mp⊥
eB2

b ×
[
3(b · ∇)u + b × ω

]}
+

+ ∇ ·
(

5∑
N=2

ΠgyrN + Πcoll
⊥

)
− en (E + u × B) − Fcoll = 0 , (40)

where E stands for the electric field and Fcoll for the collisional friction force. Thus, the magnetization

velocity u∗ substracts from the total flow velocity u in the convective derivative operator u · ∇.

This property is famously known as the ”gyroviscous cancellation”3,4,15−19. However, contrary to

widespread lore, the cancelled part of u is the magnetization velocity u∗, not the diamagnetic drift
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velocity ud = b ×∇p⊥/(enB). Only for a constant magnetic field is u∗ = ud. Also, we observe that

the parallel vorticity term χ acts as an effective renormalization of the perpendicular pressure:

p⊥ → p⊥ − χ = p⊥
(
1 − m

2eB
b · ω

)
, (41)

leaving the parallel pressure unaffected. The other two terms (a curl and the parallel derivative of a

perpendicular vector) which still stem from the Braginskii piece ∇ · Πgyr1, along with the remaining

∇ · (
∑5

N=2 ΠgyrN ) piece (31,34-36), complete the gyroviscous force contribution to the momentum

equation.
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Appendix A: The zero-Larmor-radius fourth rank fluid moment.

In its lowest order, the collision-independent perpendicular stress-flux tensor Θgyr
ijk = O(δpvth)

(9-12) involves10 the divergence of the zero-Larmor-radius fourth rank moment:

N̄
(0)
ijkl = m2

∫
d3v (vi − ui)(vj − uj)(vk − uk)(vl − ul) f (0). (42)

Here, f (0) = f (0)(m|v − u|2/2, λ,x, t) is the zero-Larmor-radius distribution function which depends

on the velocity space coordinates through the fluid-rest-frame energy, m|v−u|2/2, and the pitch angle,

sinλ = (v − u) · b/|v − u|, but is independent of the gyrophase. Then, writing

N̄
(0)
ijkl =

1
n

[
p⊥δ[ij + (p‖ − p⊥)b[ibj

] [
p⊥δkl] + (p‖ − p⊥)bkbl]

]
+ Ñ

(0)
ijkl , (43)

one gets

Ñ
(0)
ijkl =

1
5

(
2r̃

(0)
⊥ − 1

2
r̃
(0)
∆

)
δ[ijδkl] +

1
2
r̃
(0)
∆ δ[ijbkbl] +

(
2r̃

(0)
‖ − 2r̃

(0)
⊥ − 7

2
r̃
(0)
∆

)
bibjbkbl (44)

where

r̃
(0)
⊥ =

m2

4

∫
d3v |v − u|4 cos2 λ (f (0) − f2M ), (45)

r̃
(0)
‖ =

m2

2

∫
d3v |v − u|4 sin2 λ (f (0) − f2M ), (46)

r̃
(0)
∆ =

m2

4

∫
d3v |v − u|4 cos2 λ (5 sin2 λ − 1)(f (0) − f2M ) (47)

and f2M is the two-temperature Maxwellian:

f2M (m|v − u|2/2, λ,x, t) =

(
m

2π

)3/2
n5/2

p⊥ p
1/2
‖

exp

[
−m n |v − u|2

2

(
cos2 λ

p⊥
+

sin2 λ

p‖

)]
. (48)

If the zeroth-order distribution function f (0) were isotropic (not necessarily Maxwellian), i.e. inde-

pendent of λ with p‖ = p⊥, one would have r̃
(0)
‖ = r̃

(0)
⊥ and r̃

(0)
∆ = 0. With a Maxwellian zeroth-order

distribution function, r̃
(0)
‖ , r̃

(0)
⊥ and r̃

(0)
∆ would vanish.
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Appendix B: Divergence of the anisotropic stress-flux tensor.

This Appendix will outline the evaluation of the divergence of the strongly anisotropic stress-flux

tensor10 in the slow dynamics ordering (9-12):

Θgyr
ijk =

1
2
δ[ijq

gyr
T⊥k] + b[ibjg⊥k] +

α

2
ε[ilmbjbl

(
∂bn

∂xm
+

∂bm

∂xn

)(
δnk] − bnbk]

)
, (49)

where the notation g⊥ = 2qgyr
B⊥ − 1

2q
gyr
T⊥ is used.

For any vector A with curl C = ∇× A, we have the identity

∂Aj

∂xi
=

∂Ai

∂xj
+ εijkCk , (50)

and for the magnetic unit vector b,

∇× b = b × κ +
j‖
B

b . (51)

Therefore we can write

∂bn

∂xm
+

∂bm

∂xn
= 2

∂bn

∂xm
+ bnκm − bmκn +

j‖
B

εnmpbp , (52)

hence

εilmbl

(
∂bn

∂xm
+

∂bm

∂xn

)(
δnk − bnbk

)
= 2εilmbl

∂bk

∂xm
+

j‖
B

(
bibk − δik

)
(53)

and

Θgyr
ijk = δ[ij

(
1
2
qgyro
T⊥k] −

αj‖
B

bk]

)
+ b[ibj

(
g⊥k] +

αj‖
B

bk]

)
+ αε[ilmbjbl

∂bk]

∂xm
. (54)

The next step is to carry out an integration by parts in the last term, which yields

Θgyr
ijk = δ[ij

(
1
2
qgyro
T⊥k] −

αj‖
B

bk]

)
+ b[ibjhk] + ε[ilm

∂(αblbjbk])
∂xm

, (55)

where h = g⊥ + (αj‖/B)b + ∇× (αb).

The divergence of this last expression can be readily evaluated:
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∂Θgyr
ijk

∂xk
=

∂

∂xk

(
1
2
qgyr
T⊥k −

αj‖
B

bk

)
δij +

∂

∂x[i

(
1
2
qgyr
T⊥j] −

αj‖
B

bj]

)
+

∂hk

∂xk
bibj + κ[i hj] +

+ b[i

(
bk

∂hj]

∂xk
+ hk

∂bj]

∂xk
+

∂bk

∂xk
hj]

)
+ ε[ilm

∂

∂xm

[
∂(αbk)
∂xk

blbj] + ακlbj] + αblκj]

]
. (56)

Finally, expanding the last ∂/∂xm derivative, using standard vector identities and collecting like terms,

we get:

∂Θgyr
ijk

∂xk
= ∇ ·

(
1
2
qgyr

T⊥ −
αj‖
B

b

)
δij +

∂

∂x[i

(
1
2
qgyr
T⊥j] −

αj‖
B

bj]

)
+ 3∇ · h bibj +

+ κ[i g⊥j] + b[i dj] + ε[ilm

[(
∇ · (αb) bl + ακl

) ∂bj]

∂xm
+ αbl

∂κj]

∂xm

]
, (57)

with

d =
3αj‖
B

κ + ∇×
[
g⊥ × b − α(∇ · b)b

]
+ 2

{[
g⊥ + ∇× (αb)

]
· ∇

}
b . (58)

15



Appendix C: Divergence of the velocity-gradient-driven gyroviscosity tensor.

In this Appendix we shall evaluate the divergence of the velocity-gradient-driven part6 of the

gyroviscous stress tensor (22,23):

Πgyr1
ij =

mp⊥
4eB

ε[iklbk

(
∂um

∂xl
+

∂ul

∂xm

)(
δmj] + 3bmbj]

)
. (59)

Following the procedure of Appendix B, we apply the identity (50) to the vector u with ω = ∇×u,

to get:

εiklbk

(
∂um

∂xl
+

∂ul

∂xm

)(
δmj + 3bmbj

)
= εiklbk

[(
2
∂uj

∂xl
+ εjlnωn

)
+ 3

(
2

∂ul

∂xm
+ εlmnωn

)
bmbj

]
=

= 2εiklbk
∂uj

∂xl
− bkωkδij +

(
6εiklbkbm

∂ul

∂xm
− 2ωi + 3bkωkbi

)
bj . (60)

Therefore we can write:

Πgyr1
ij =

mp⊥
2eB

ε[iklbk

∂uj]

∂xl
− χ δij + B[i aj] , (61)

where

χ =
mp⊥
2eB

b · ω (62)

and

a =
mp⊥
2eB2

b ×
[
3(b · ∇)u + b × ω

]
+

χ

2B
b . (63)

After an integration by parts, Eq.(61) becomes

Πgyr1
ij =

∂

∂xl

(
mp⊥
2eB

ε[iklbkuj]

)
− mn

2
u[i u∗j] − χ δij + B[i aj] , (64)

with

u∗ = − 1
en

∇×
(

p⊥
B

b

)
. (65)

16



We can now evaluate easily the divergence of the latter expression (64):

∂Πgyr1
ij

∂xj
= εikl

∂

∂xl

[
uj

∂

∂xj

(
mp⊥
2eB

bk

)
+

∂uj

∂xj

mp⊥
2eB

bk

]
− m

2
∂(nu[i u∗j])

∂xj
− ∂χ

∂xi
+

∂B[i aj])
∂xj

, (66)

or using vector notation, taking into account ∇ · (nu∗) = 0, ∇ ·B = 0 and standard vector identities,

∇ · Πgyr1 = −∇×
[
(u · ∇)

(
mp⊥
2eB

b

)
+ (∇ · u)

mp⊥
2eB

b

]
−

−m

2

[
∇× (nu∗ × u) + 2n(u∗ · ∇)u

]
− ∇χ + ∇× (B × a) + 2(B · ∇)a . (67)

Finally, we collect terms and use some further vector identities to arrive at the result:

∇ · Πgyr1 = − ∇×
{

mp⊥
eB

[
(b · ∇)u +

1
2

(
∇ · u − 3b ·

[
(b · ∇)u

])
b

]}
−

− m n (u∗ · ∇)u − ∇χ + 2(B · ∇)a . (68)
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